

Rocket 7528D (R7528D) NVMe RAID Adapter User Guide

V1.00 - June 18, 2024

 $Copyright\ 2024\ HighPoint\ Technologies,\ Inc.$

All rights reserved

Table of Contents

1. Overview	3
1.1. Key Features	3
1.1.1. FRU	
1.1.2. Synthetic Hierarchy	
2. R7528D Hardware Description	5
2.1. R7528D Layout	5
2.2. PCIe Host Interface	8
2.3. Storage Interface	
2.4. Basic Specifications	
3. R7528D SFF-8654 Connector	9
3.1. SFF-8654 Connector Pin Designation	9
3.2. SFF-8654 Connetor Pinout	9
3.3. Backplane Connector Support	11
3.3.1. UBM Backplane	
3.3.2. VPP Backplane	11
4. Cable Accessories	12
4.1. TS8i-8639-060	12
4.1.1. Cable Diagram	
4.1.2. Cable Drawings and Pinouts	
4.1.3. Cable Connection	13
4.2. 8654-8654-110	14
4.2.1. Cable Diagram	14
4.2.2. Cable Drawings and Pinouts	
4.2.3. Cable Connection	
4.3. 8654-CIO8-110	
4.3.1. Cable Diagram	
4.3.2. Cable Drawings and Pinouts	
4.3.3. Cable Connection	
4.4. 8654-8643-210	
4.4.1. Cable Diagram	
4.4.2. Cable Drawings and Pinouts	
4.4.3. Cable Connection	
4.5. 8654-8611-205	
4.5.1. Cable Diagram	
4.5.2. Cable Drawings and Pinouts	
4.5.3. Cable Connection	
5. R7528D Installation Instructions	
6. Revision History	
Version 1.00, June 18, 2024	23

1. Overview

The R7528D is the latest member of our PCIe Gen4 NVMe RAID Adapter product family.

HighPoint Rocket Series NVMe connectivity adapters address the needs of solution providers and system integrators that cater to vertical marketplaces for high-speed industrial, corporate, and media applications. They were designed for professional applications that demand uncompromised storage performance, scalability, and adaptability in a compact, easy-to-integrate package that is universally compatible with industry-standard x86-64 (Intel/AMD) platforms.

The R7528D's eight independent device ports can support U.2/U.3 NVMe SSDs via versatile cabling solutions.

All major Windows operating systems and current distributions of Linux natively support the R7528D. You won't need to juggle a series of device drivers, install a complex software suite, or master a specialized management interface. Your NVMe SSDs will be automatically recognized and can be prepped and mounted using the operating system's standard tool set.

1.1. Key Features

- Dedicated PCIe 4.0 x16 host interface
- Support data transfer rate 32GB/s
- Provide four internal SlimSAS (SFF-8654 x8) connectors
- Support eight dedicated U.2/U.3 NVMe devices
- Complies with SFF-9402 standard
- Provide a full-height bracket and a low-profile bracket
- True NVMe Hot-Plug & Hot-Swap capability
- FRU Inventory support
- Downstream port containment
- Read tracking
- Synthetic hierarchy
- Software Secure Boot
- Out-Of-band Support BMC Support
- Complies with SFF-TA-1005 specification for Universal Backplane Management (UBM)
- Support VPP Backplane
- Support LED Management
- Support the following Operating Systems:
 - Windows 11,10/ Server 2022,2019,2016/ Microsoft Hyper-V
 - RHEL/Debian/Ubuntu/Fedora/Proxmox/Rocky Linux (Linux kernel 3.10 and later)

1.1.1. FRU

The *Field Replacement Unit (FRU)* ensures smooth operation and efficient maintenance of complex systems. The unit is designed to house and protect vital product data (VPD).

Information fields within a VPD resource type contain a three-byte header and some data. The three-byte header contains a two-byte keyword and a one-byte length. A keyword is a two-character (ASCII) mnemonic that uniquely identifies the information in the field. The last byte of the header is binary and represents the length value (in bytes) of the following data.

In the event of a hardware failure, the FRU can be quickly replaced, returning the device to a fully functional state without requiring extensive diagnostics or data recovery. This reduces downtime and minimizes the possibility of data loss, ensuring that critical operations can continue uninterrupted.

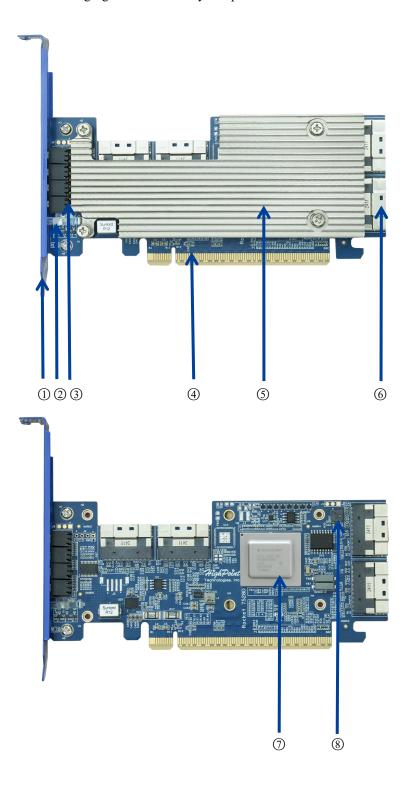
The following table describes the details and descriptions of the VPD.

Table 1: Details and Descriptions of the VPD

Key Word	Details	Descriptions
PN	AIC Part Number	This keyword is an extension to the Device ID (or Subsystem ID) in the Configuration Space header.
EC	Engineering Change Level	The characters are alphanumeric and represent the engineering change level for this add-in card.
MN	Manufacture ID	This keyword is provided as an extension to the Vendor ID (or Subsystem Vendor ID) in the Configuration Space header. This allows vendors to identify an additional level of detail regarding the sourcing of this device.
SN	Serial Number	The characters are alphanumeric and represent the unique add-in card Serial Number.
Vx	Vendor Specific	This is a vendor-specific item, and the characters are alphanumeric. The keyword's second character (x) can be 0 through 9 or A through Z. V0 indicates the Vendor Name
		V1 indicates the Main Chip

1.1.2. Synthetic Hierarchy

A synthetic hierarchy can be created to isolate the host from these physical PCIe topology changes and errors.


2. R7528D Hardware Description

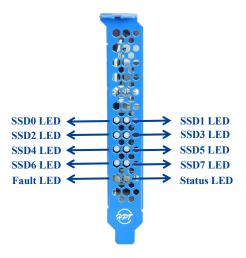
2.1. R7528D Layout

The layout of the R7528D is presented in two parts.

• Front View

The following figure shows the key components of the R7528D.

The following table describes the key components of the R7528D.


Table 2: Key component of the R7528D

Number	Туре	Description							
1	Bracket	Full-height bracket (optional low-profile bracket included).							
		The R7528D is secured to the chassis by a bracket.							
2	RGB	Status LED and	Fault LED.						
		Status LE	D The state of R7528D PCIe bandwidth.						
		● Fault LEI	O The state of the Broadcom chipset and SSD temperature.						
3	LED	Eight SSD LED	Eight SSD LED. SSD LED indicates the state of SSD.						
4	PCIe Host Interface	PCIe 4.0 x16 host interface. The interface between the R7528D and the host system. With the PCIe interface, this connector provides power to the board.							
(3)	Cooling System	Passive Heatsink. Used to dissipate heat from electronic components prone to heat generation.							
6	Storage Interface	Four internal SFF-8654 connectors. Connect the R7528D by cable to the storage devices.							
7	Chip	Broadcom PEX	88048 chip.						
8	Beeper	1-0-1-0-1-0	The SSD has failed.						
		1-0-0-1-0-0 The beeper will chirp when any of the following conditions are triggered.							
		● The Broadcom chipset temperature is > 105°C.							
		The SSD temperature is ≥ the SSD warning							
		threshold.							
		1-1-1-1-1 Both "1-0-1-0-1-0" and "1-0-0-1-0-0" above occur simultaneously.							
	Note: 1 means alarming, and 0 means not alarming.								

• LED View

The following figure shows the LED Indicators of the R7528D.

LED View

The following table describes the SSD LED, Status LED, and Fault LED of the R7528D.

Table 3: Description of LED

LED	Color	Status	Description
SSD LED		OFF	The R7528D is powered off, or the SSD is not detected.
		Solid Green	The SSD is detected.
		Solid Red	The SSD has failed.
		Fast Flash Red	The LED blinks red at 4 Hz to indicate that the reinserted disk is in the rebuild state.
		Interval Flash Red	The LED blinks red twice in the first second, then goes out for one second and continues to cycle this process. This indicates the disk is greater than or equal to the SSD warning threshold.
		Slow Flash Red	The LED blinks red at 1 Hz to indicate the disk's location, which can be accessed through the HighPoint RAID Management SoftwareIdentify LED function.
			Identify ON means the LED blinks, and Identify OFF means the LED light is restored to its original state.
Status LED		OFF	The R7528D is powered off.
		Fast Flash Green	The LED blinks green at 4 Hz to indicate that the R7528D's bandwidth is PCIe 4.0 x16.
		Fast Flash Yellow	The LED blinks yellow at 4 Hz to indicate that the the R7528D's bandwidth is PCIe 4.0 x8 or PCIe 3.0 x16.
		Fast Flash Cyan	The LED blinks cyan at 4 Hz to indicate that the R7528D's bandwidth is PCIe 4.0 x4 or PCIe 3.0 x8.
		Fast Flash White	The LED blinks white at 4 Hz to indicate that the R7528D's bandwidth is PCIe 3.0 x4.
		Fast Flash Red	The LED blinks red at 4 Hz to indicate that the R7528D's bandwidth does not appear as above.
Fault LED		OFF	The R7528D is powered off or not in error.
		Fast Flash Red	The LED blinks red at 4 Hz to indicate that any of the following have been triggered.
			• The Broadcom chipset temperature is > 105°C.
			• The SSD temperature is \geq the SSD warning threshold.
		Slow Flash Red	The LED blinks red at 1 Hz to indicate that the initialized RAID is not in normal status.
		Solid Red	Both "Fast Flash Red" and "Slow Flash Red" above occur at the same time.

2.2. PCIe Host Interface

The R7528D's PCIe 4.0 host interface provides maximum transmission. Other PCIe host interface features include the following:

- 16-lane PCIe host interface
- Support of x16 link width
- 16-lane aggregate bandwidth of up to 32GB/s

2.3. Storage Interface

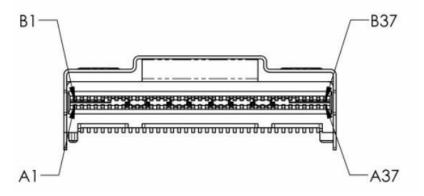
The R7528D has four SFF-8654 interfaces. Other storage interface features include the following:

- Dedicated PCIe 4.0 x4 per port
- Supports up to eight NVMe devices (up to x4 lanes, U.2/U.3 media)
- Data transfer at 8GB/s

2.4. Basic Specifications

The following table describes the basic specifications of the R7528D.

Table 4: Basic Specifications of R7528D


Model		R7528D				
Form Factor		LP-MD2, Single Width				
Weight		340g				
Dimension	Length	6.10"				
	Height	2.71"				
Power consumption		29.58W				
Power supply		PCIe: 12V, 3.3V				
Work temperature		+5°C ~ + 55°C				
Storage temperature		-20°C ~ +80°C				
MTBF (Mean Time Before	re Failure)	> 5,000,000 hours at 40°C				

3. R7528D SFF-8654 Connector

3.1. SFF-8654 Connector Pin Designation

The R7528D has four x8 SFF-8654 connectors, designated as A and B. It follows the SFF-9402 standard for connector sideband signal assignments.

The following figure shows the SFF-8654 connector pin designation.

3.2. SFF-8654 Connetor Pinout

The following table defines the R7528D's SFF-8654 connector pinouts.

Table 5: SFF-8654 Connetor Pinouts

Pin	Name	Pin	Name		
A1	GND	B1	GND		
A2	PERp0	B2	РЕТр0		
A3	PERn0	В3	PETn0		
A4	GND	B4	GND		
A5	PERp1	B5	PETp1		
A6	PERn1	В6	PETn1		
A7	GND	В7	GND		
A8	NC	В8	U0_SCL		
A9	NC	В9	U0_SDA		
A10	GND	B10	GND		
A11	SFF8654_LCK1_P	B11	PE_RESET#		
A12	SFF8654_LCK1_N	B12	U0_CWAKE#		

A13	GND	B13	GND
A14	PERp2	B14	PETp2
A15	PERn2	B15	PETn2
A16	GND	B16	GND
A17	PERp3	B17	PETp3
A18	PERn3	B18	PETn3
A19	GND	B19	GND
A20	PERp4	B20	PETp4
A21	PERn4	B21	PETn4
A22	GND	B22	GND
A23	PERp5	B23	PETp5
A24	PERn5	B24	PETn5
A25	GND	B25	GND
A26	NC	B26	U1_SCL
A27	NC	B27	U1_SDA
A28	GND	B28	GND
A29	SFF8654_LCK2_P	B29	PE_RESET#
A30	SFF8654_LCK2_N	B30	U1_CWAKE#
A31	GND	B31	GND
A32	PERp6	B32	РЕТр6
A33	PERn6	B33	PETn6
A34	GND	B34	GND
A35	PERp7	B35	PETp7
A36	PERn7	B36	PETn7
A37	GND	B37	GND
			

3.3. Backplane Connector Support

The R7528D supports the industry-standard SFF-TA-1005 Specification for Universal Backplane Management (UBM). UBM provides the following key features:

- Reports the backplane capabilities, including the following:
 - NVMe drive widths
 - Maximum speeds
 - Dual-port support
 - Support for drive power enable and disable (PWDIS)
- Supports cable order independence
 - Disk LED control and slot ID are not dependent on cable order
- Enables disk hot-plug insertion

3.3.1. UBM Backplane

The SFF-TA-1005 (UBM) standard-compliant backplanes are designed to transmit slot numbers to the R7528D automatically. This innovation eliminates the need to manually configure cables between the R7528D and the backplane connector, optimizing cable flexibility.

Most backplanes use x4 or x8 host connectors. Each x8 connector has an "A" side and a "B" side.

3.3.2. VPP Backplane

The R7528D supports the legacy implementation of Virtual Pin Port (VPP) backplane management. The cables must be connected according to the desired slot enumeration to identify the slots correctly. Connect the SFF-8654 connector of the R7528D to the backplane via the cable.

4. Cable Accessories

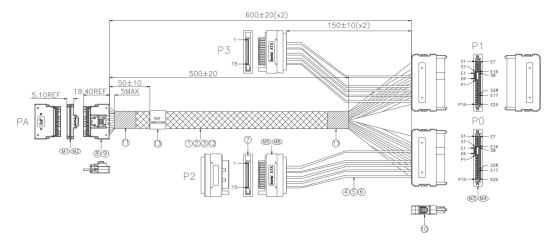
A wide selection of flexible cabling options is available for the R7528D, which enable the R7528D to mix configurations of U.2/U.3 NVMe SSDs via SFF-8639, SFF-8643, SFF-8654, SFF-8611, and MCIO connectors.

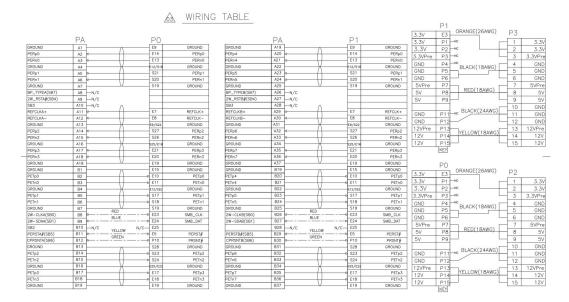
The following sections indicate the cable pinout and connection diagram for supported cable accessories.

4.1. TS8i-8639-060

SFF-8654 Host to U.2 SFF-8639 Device cable with a 15-pin SATA power connector. Each cable supports two U.2 NVMe SSDs. Length 0.6M.

4.1.1. Cable Diagram

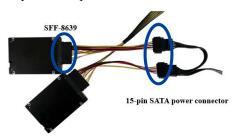




SFF-8639

4.1.2. Cable Drawings and Pinouts

The following figure shows the pinout for the HighPoint TS8i-8639-060 cable, one x8 SFF-8654 to two x4 SFF-8639 connection.



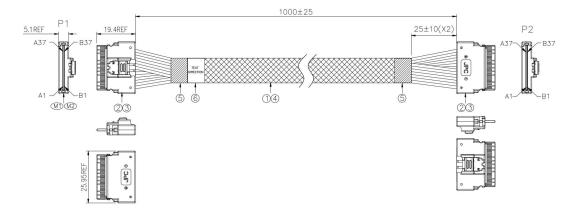
4.1.3. Cable Connection

The following steps show the connection of a U.2 SSD to the R7528D using the TS8i-8639-060 cable.

1. Connect the SFF-8639 connector of the TS8i-8639-060 cable to the NVMe SSD, and connect the 15-pin SATA power connector of the TS8i-8639-060 cable to the system power supply.

2. Connect the SFF-8654 connector of the TS8i-8639-060 cable to the R7528D.

4.2. 8654-8654-110


SFF-8654 Host to SFF-8654 Device cable. Each cable can host up to two NVMe SSDs. Length 1M.

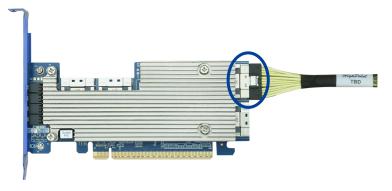
4.2.1. Cable Diagram

4.2.2. Cable Drawings and Pinouts

The following figure shows the pinout for the HighPoint 8654-8654-110 cable, one x8 SFF-8654 to one x8 SFF-8654 connection.

WIRING TABLE

		P1		P2					P1		P2		
GROUND	B37	B37	^	A37	A37	GROUND	GROUND	A37	A37	├	B37	B37	GROUND
TX7-	B36	B36	A	A36	A36	RX7-	RX7-	A36	A36	A	B36	B36	TX7-
TX7+	B35	B35		A35	A35	RX7+	RX7+	A35	A35	4	B35	B35	TX7+
GROUND	B34	B34	X	A34	A34	GROUND	GROUND	A34	A34	1 ×	B34	B34	GROUND
TX6-	B33	B33	(A	A33	A33	RX6-	RX6-	A33	A33	A	B33	B33	TX6-
TX6+	B32	B32		A32	A32	RX6+	RX6+	A32	A32	4	B32	B32	TX6+
GROUND	B31	B31	X	A31	A31	GROUND	GROUND	A31	A31	1—————————————————————————————————————	B31	B31	GROUND
SIDEBAND	B30	B30	(A)	A30	A30	SIDEBAND	SIDEBAND	A30	A30	A	B30	B30	SIDEBAND
SIDEBAND	B29	B29		A29	A29	SIDEBAND	SIDEBAND	A29	A29	k	B29	B29	SIDEBAND
GROUND	B28	B28	X	A28	A28	GROUND	GROUND	A28	A28	1—————————————————————————————————————	B28	B28	GROUND
SIDEBAND	B27	B27	A	A27	A27	SIDEBAND	SIDEBAND	A27	A27	A	B27	B27	SIDEBAND
SIDEBAND	B26	B26		A26	A26	SIDEBAND	SIDEBAND	A26	A26	4	B26	B26	SIDEBAND
GROUND	B25	B25	X	A25	A25	GROUND	GROUND	A25	A25	1—————	B25	B25	GROUND
TX5-	B24	B24	A	A24	A24	RX5-	RX5-	A24	A24	A	B24	B24	TX5-
TX5+	B23	B23		A23	A23	RX5+	RX5+	A23	A23	4	B23	B23	TX5+
GROUND	B22	B22	X	A22	A22	GROUND	GROUND	A22	A22	1—————————————————————————————————————	B22	B22	GROUND
TX4-	B21	B21	A	A21	A21	RX4-	RX4-	A21	A21	k /	B21	B21	TX4-
TX4+	B20	B20		A20	A20	RX4+	RX4+	A20	A20	4	B20	B20	TX4+
GROUND	B19	B19	X	A19	A19	GROUND	GROUND	A19	A19	1 X	B19	B19	GROUND
TX3-	B18	B18	A	A18	A18	RX3-	RX3-	A18	A18	A	B18	B18	TX3-
TX3+	B17	B17		A17	A17	RX3+	RX3+	A17	A17	k	B17	B17	TX3+
GROUND	B16	B16	X	A16	A16	GROUND	GROUND	A16	A16	1—————————————————————————————————————	B16	B16	GROUND
TX2-	B15	B15	A	A15	A15	RX2-	RX2-	A15	A15	▶	B15	B15	TX2-
TX2+	B14	B14		A14	A14	RX2+	RX2+	A14	A14	↓	B14	B14	TX2+
GROUND	B13	B13	X	A13	A13	GROUND	GROUND	A13	A13	1—————————————————————————————————————	B13	B13	GROUND
SIDEBAND	B12	B12	(A)	A12	A12	SIDEBAND	SIDEBAND	A12	A12	A	B12	B12	SIDEBAND
SIDEBAND	B11	B11	1	A11	A11	SIDEBAND	SIDEBAND	A11	A11	la ()	B11	B11	SIDEBAND
GROUND	B10	B10	X	A10	A10	GROUND	GROUND	A10	A10	1X	B10	B10	GROUND
SIDEBAND	B9	B9	(A	A9	A9	SIDEBAND	SIDEBAND	A9	A9	k /	B9	B9	SIDEBAND
SIDEBAND	B8	B8		A8	A8	SIDEBAND	SIDEBAND	A8	A8	↓	B8	B8	SIDEBAND
GROUND	B7	B7	X	A7	A7	GROUND	GROUND	A7	A7	1—————————————————————————————————————	B7	B7	GROUND
TX1-	B6	B6	(A)	A6	A6	RX1-	RX1-	A6	A6	A	B6	B6	TX1-
TX1+	B5	B5		A5	A5	RX1+	RX1+	A5	A5	k	B5	B5	TX1+
GROUND	B4	B4	X	A4	A4	GROUND	GROUND	A4	A4	1 X	B4	B4	GROUND
TXO-	В3	В3	- A	A3	A3	RXO-	RXO-	A3	A3	k /	В3	B3	TX0-
TXO+	B2	B2		A2	A2	RXO+	RX0+	A2	A2	0	B2	B2	TX0+
GROUND	B1	B1	V	A1	A1	GROUND	GROUND	A1	A1	1V	B1	B1	GROUND

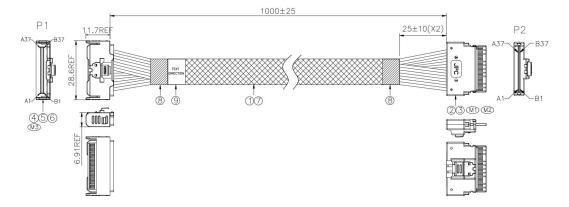

4.2.3. Cable Connection

The following steps show the connection of the backplane to the R7528D using the 8654-8654-110 cable.

1. Connect the SFF-8654 connector of the 8654-8654-110 cable to the backplane.

2. Connect the other SFF-8654 connector of the 8654-8654-110 cable to the R7528D.

4.3. 8654-CIO8-110


SFF-8654 Host to MCIO Device cable. Each cable can host up to two NVMe SSDs. Length 1M.

4.3.1. Cable Diagram

4.3.2. Cable Drawings and Pinouts

The following figure shows the pinout for the HighPoint 8654-CIO8-110 cable, one x8 SFF-8654 to one x8 MCIO connection.

WIRING TABLE

GROUND	B37	B37			A37	A37	GROUND	GROUND
TX7-	B36	B36	Λ		A36	A36	RX7-	RX7-
TX7+	B35	B35			A35	A35	RX7+	RX7+
GROUND	B34	B34	V		A34	A34	GROUND	GROUND
TX6-	B33	B33	Λ		A33	A33	RX6-	RX6-
TX6+	B32	B32			A32	A32	RX6+	RX6+
GROUND	B31	B31	V		A31	A31	GROUND	GROUND
SIDEBAND	B30	B30			A30	A30	SIDEBAND	SIDEBAND
SIDEBAND	B29	B29			A29	A29	SIDEBAND	SIDEBAND
GROUND	B28	B28	V		A28	A28	GROUND	GROUND
SIDEBAND	B27	B27	(\)		A27	A27	SIDEBAND	SIDEBAND
SIDEBAND	B26	B26			A26	A26	SIDEBAND	SIDEBAND
GROUND	B25	B25	V		A25	A25	GROUND	GROUND
TX5-	B24	B24			A24	A24	RX5-	RX5-
TX5+	B23	B23			A23	A23	RX5+	RX5+
GROUND	B22	B22	X		A22	A22	GROUND	GROUND
TX4-	B21	B21	(\		A21	A21	RX4-	RX4-
TX4+	B20	B20			A20	A20	RX4+	RX4+
GROUND	B19	B19	X		A19	A19	GROUND	GROUND
TX3-	B18	B18			A18	A18	RX3-	RX3-
TX3+	B17	B17		b	A17	A17	RX3+	RX3+
GROUND	B16	B16	X		A16	A16	GROUND	GROUND
TX2-	B15	B15	/ \		A15	A15	RX2-	RX2-
TX2+	B14	B14		b	A14	A14	RX2+	RX2+
GROUND	B13	B13	X		A13	A13	GROUND	GROUND
SIDEBAND	B12	B12			A12	A12	SIDEBAND	SIDEBAND
SIDEBAND	B11	B11	- 1	─	A11	A11	SIDEBAND	SIDEBAND
GROUND	B10	B10	X		A10	A10	GROUND	GROUND
SIDEBAND	B9	B9		b	A9	A9	SIDEBAND	SIDEBAND
SIDEBAND	B8	B8	- 1	b	A8	A8	SIDEBAND	SIDEBAND
GROUND	B7	B7	X	1	A7	A7	GROUND	GROUND
TX1-	B6	B6	— A		A6	A6	RX1-	RX1-
TX1+	B5	B5		b	A5	A5	RX1+	RX1+
GROUND	B4	B4	X		A4	A4	GROUND	GROUND
TXO-	B3	В3	— A	→	A3	A3	RXO-	RXO-
TXO+	B2	B2			A2	A2	RXO+	RXO+
GROUND	B1	B1	V		A1	A1	GROUND	GROUND

		P1		P2		
GROUND	A37	A37	1	B37	B37	GROUND
X7-	A36	A36	Λ · · · · · · · · · · · · · · · · · · ·	B36	B36	TX7-
X7+	A35	A35		B35	B35	TX7+
ROUND	A34	A34	1 X	B34	B34	GROUND
X6-	A33	A33	(A)	B33	B33	TX6-
X6+	A32	A32		B32	B32	TX6+
ROUND	A31	A31	1 X	B31	B31	GROUND
SIDEBAND	A30	A30	A ()	B30	B30	SIDEBAND
SIDEBAND	A29	A29		B29	B29	SIDEBAND
GROUND	A28	A28	1X	B28	B28	GROUND
SIDEBAND	A27	A27	Δ ()	B27	B27	SIDEBAND
SIDEBAND	A26	A26		B26	B26	SIDEBAND
ROUND	A25	A25	1 X	B25	B25	GROUND
X5-	A24	A24	A ()	B24	B24	TX5-
X5+	A23	A23		B23	B23	TX5+
ROUND	A22	A22	1 X	B22	B22	GROUND
X4-	A21	A21	4	B21	B21	TX4-
X4+	A20	A20		B20	B20	TX4+
ROUND	A19	A19	1 X	B19	B19	GROUND
X3-	A18	A18	4 /\	B18	B18	TX3-
X3+	A17	A17		B17	B17	TX3+
ROUND	A16	A16	1—————————————————————————————————————	B16	B16	GROUND
X2-	A15	A15	A ()	B15	B15	TX2-
X2+	A14	A14		B14	B14	TX2+
ROUND	A13	A13	1—————	B13	B13	GROUND
SIDEBAND	A12	A12	a ()	B12	B12	SIDEBAND
SIDEBAND	A11	A11		B11	B11	SIDEBAND
ROUND	A10	A10	1 X	B10	B10	GROUND
SIDEBAND	A9	A9	A ()	B9	B9	SIDEBAND
SIDEBAND	A8	A8		B8	B8	SIDEBAND
ROUND	A7	A7	1 X	B7	B7	GROUND
X1-	A6	A6	A	B6	B6	TX1-
X1+	A5	A5		B5	B5	TX1+
ROUND	A4	A4	1—————————————————————————————————————	B4	B4	GROUND
X0-	A3	A3	A	B3	B3	TX0-
X0+	A2	A2		B2	B2	TX0+
ROUND	A1	A1	1V	B1	B1	GROUND

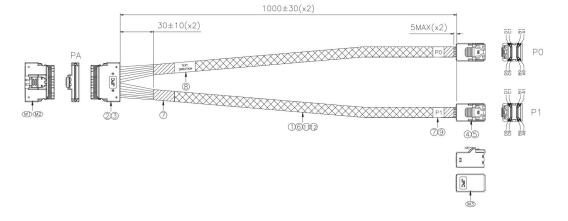
4.3.3. Cable Connection

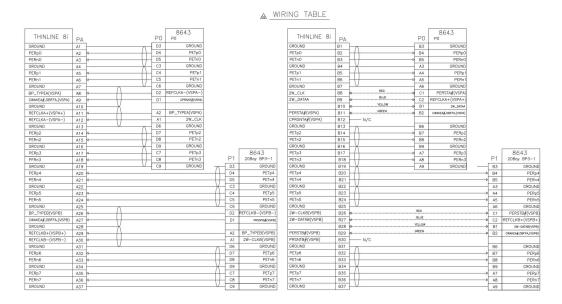
The following steps show the connection of an NVMe SSD to the R7528D using the 8654-CIO8-110 cable.

1. Connect the MCIO connector of the 8654-CIO8-110 cable to the backplane.

2. Connect the SFF-8654 connector of the 8654-CIO8-110 cable to the R7528D.

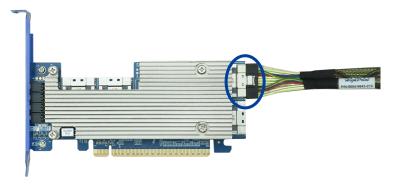
4.4. 8654-8643-210


SFF-8654 Host to SFF-8643 Device cable. Each cable can host up to two NVMe SSDs. Length: 1M.


4.4.1. Cable Diagram

4.4.2. Cable Drawings and Pinouts

The following figure shows the HighPoint 8654-8643-210 cable pinout, one x8 SFF-8654 to two x4 SFF-8643 connection.

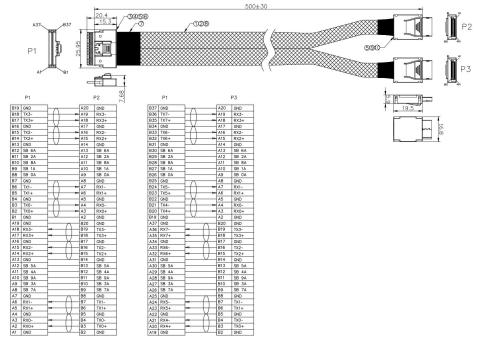

4.4.3. Cable Connection

The following steps show the connection of the SSD enclosure to the R7528D using the 8654-8643-210 cable.

1. Connect the SFF-8643 connector of the 8654-8643-210 cable to the SSD enclosure.

2. Connect the SFF-8654 connector of the 8654-8643-210 cable to the R7528D.

4.5. 8654-8611-205


SFF-8654 Host to SFF-8611 Device cable. Each cable can host up to two NVMe SSDs. Length: 0.5M.

4.5.1. Cable Diagram

4.5.2. Cable Drawings and Pinouts

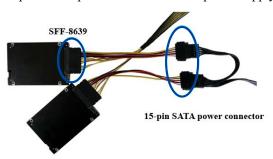
The following figure shows the HighPoint 8654-8611-205 cable pinout, one x8 SFF-8654 to two x4 SFF-8611 connection.

4.5.3. Cable Connection

The following steps show the connection of the SSD enclosure to the R7528D using the 8654-8611-205 cable.

1. Connect the SFF-8611 connector of the 8654-8611-205 cable to the SSD enclosure.

2. Connect the SFF-8654 connector of the 8654-8611-205 cable to the R7528D.


5. R7528D Installation Instructions

The R7528D provides four SFF-8654 connectors. These connectors accept a variety of HighPoint Certified Cable Accessories (see the Accessories section towards the end of this guide for more information). The following steps explain how to connect U.2 NVMe SSDs directly to the R7528D using the HighPoint TS8i-8639-060 cable.


- 1. Use a wired ESD wrist strap that is properly grounded.
- 2. Unpack and remove the R7528D and check it for damage. If it appears damaged, please get in touch with HighPoint Technical Support.
- 3. Shut down the system and disconnect the AC power cord.
- 4. Align the R7528D to one of the motherboard's available slots. Press down gently but firmly to seat the R7528D correctly in the slot.

5. Connect the SFF-8639 connector of the TS8i-8639-060 cable to the NVMe SSD, and connect the 15-pin SATA power connector to the power supply

6. Connect the SFF-8654 connector of the TS8i-8639-060 cable to the R7528D.

- 7. Connect the remaining NVMe SSDs to the R7528D as described above.
- 8. Turn on the power to the system.

6. Revision History

Version 1.00, June 18, 2024

Initial version.